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Hume-Rothery and his co-workers demonstrated the importance of the electron-to-atom
(e/a) ratio in controlling the range of stability of solid solutions, intermetallic compound
formation and liquidus temperatures in metals and alloys. Since then, this parameter has
been shown to vary in a systematic manner with a number of other properties such as the
axial ratio of hexagonal phases, formation of defect phases, stacking fault energy,
electronic specific heat coefficient, flow stress, superconducting transition temperature,
stress corrosion cracking, elastic constants, activation energy for diffusion etc. These
relationships are reviewed here to show that the e/a ratio constitutes a useful parameter
for rationalizing the effect of solute additions, in dilute concentration, on several properties
of the solvent matrix. This approach can also be used in a limited way even in concentrated
alloys. C© 2001 Kluwer Academic Publishers

1. Introduction
The modification of the physical properties of materi-
als is one of the principal aims of research in material
science. After any physical property is measured, the
question arises regarding its rationalization with com-
position. From an energetic point of view, the change
in energy of a metal upon alloying can be attributed to
the change in electronic energy or the misfit or strain
energy [1]. The relative importance of both factors in
controlling the change in the energy due to alloy forma-
tion is discussed in detail by Oriani [2–6], who states
that whenever the misfit energy arising from the differ-
ent atomic sizes of the solute or solvent is made the ba-
sis of estimating heat of solution, contradictory results
are achieved for different alloy systems. Oriani further
states that all changes in the energy of alloy system owe
their origin to the electronic considerations. Proceeding
on a similar basis, this article is a survey of the variation
of the properties with thee/a ratio. In many cases, a
pattern emerges whenever the magnitude of a physical
property is plotted against thee/a ratio. A breakdown
in the regularity of this relationship is usually an indi-
cation of significant changes in electronic structure of
the matrix.

Hume-Rothery listed four factors of importance in
relation to the electronic structure of alloys: (a) the
difference between the electronegativities of the two
metals, (b) a tendency for elements near the end of
short periods and B subgroups to complete their octet
of electrons, and a similar tendency to fill the d shell
in later transition elements, (c) orbital type restrictions
in structures with certain types of hybrid bonding and

(d) the formation of definite crystal structures at char-
acteristice/a ratios (equal to 3/2, 21/13 and 7/4) [7].
Hume-Rothery pointed out the importance ofe/a ratio
in controlling the phase stability and phase boundaries
in binary alloys [8, 9]. Bradley generalized this con-
cept and suggested that there is a tendency for many
alloy phases to occur when the ratio of number of free
valence electrons agrees with the monotonic sequence
[2n− 1]/n wheren= 1, 2, 3, 4, 5, 6, 7 [10]. The char-
acteristice/a ratio for intermetallic phases in Cu based
alloy systems were shown to follow this sequence.

High quality data on the effect of thee/a ratio on
the physical properties is present in the literature in a
dispersed manner. While the role ofe/a ratio in phase
stability is well catalogued, it is not often recognized
that this ratio can affect the mechanical behavior. This
paper is in the nature of a tour-de-horizon to show that a
single parameter can control diverse physical properties
of metallic systems. A survey of the relationship of
thee/a ratio with the following physical properties is
presented:

(1) the range of stability of solid solutions,
(2) intermetallic compound formation,
(3) liquidus temperature in metals,
(4) the axial ratio of hexagonal phases,
(5) formation of defect phases,
(6) stacking fault energy,
(7) electronic specific heat coefficient,
(8) flow stress,
(9) superconducting transition temperature,

(10) stress corrosion cracking,
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(11) elastic constants and
(12) activation energy for diffusion

All these properties may vary in a systematic manner
with the e/a ratio. The extent and diversity of the re-
lationship ofe/a ratio to physical properties suggests
that it may be a useful parameter for optimization of
physical properties.

In a recent paper Ogwu and Davies [11] have de-
scribed other applications such as the relationship be-
tween electronic structure and (a) dislocation motion
and ductility in metals, intermetallics, semiconductors
and ceramics, (b) formation of martensite in shape
memory alloys, (c) hardness of carbides and borides,
(d) work of adhesion between metals and ceramics,
(e) transformation kinetics in steel, (f) transition metal
oxide sintering additives on the densification of ceram-
ics and (g) propagation of cavities in superplastic ce-
ramics. In the last two decades, there has generally been
very little work done in the style of Hume Rothery
to make predictions based on simple parameters. Ear-
lier work [12] used the Engel-Brewer theory for the
electronic distribution in pure metals to correlate the
e/a ratio with the bulk elastic moduli, cohesive energy,
bond energy, atomic volume, heat of fusion and melt-
ing temperature. All these plots reveal fairly linear re-
lations, with the bulk modulus more sensitively related
to the electron concentration than the other physical
properties. Recent references do not use the terminol-
ogy used by Hume Rothery to express their results,
so it is difficult to compare the older results with re-
cent calculations. While being fully aware of the lim-
itations of such ideas, we believe that documentation
of the relationship between a broad spectrum of physi-
cal properties that show a correlation with thee/a ratio
should be brought to light and that there is an obvi-
ous utility in the use of simple parameters to under-
stand complicated electronic processes. Some of the
explanations provided below are well known, but are
included for the sake of completeness. The present ap-
proach has practical utility as well, providing a method
for fine tuning the compositions for practical applica-
tions such as development of superalloys, change in
elastic moduli of alloys, formation of metallic glasses
and similar applications which are based on the above
properties.

2. Theoretical consideration
The attempt to discuss the compositional variation of
the physical properties on the basis of thee/a ratio im-
plies that the nearly free electron gas assumption ade-
quately describes the state of extra-core electrons even
in alloys [13–15]. Mott pointed out that valence dif-
ferences among the constituents of dilute alloys must
be neutralized by excess electrons within a distance of
atomic dimensions in order for long range electrical
fields to be eliminated. The excess alloy charge must
also be screened from the bulk metal in equilibrium
to ensure electronic conductivity. Individual cells of
an alloy, thus, preserve an electronic distribution quite
similar to that in the pure metals. The net effect of al-
loying is to change the wave vector for electrons at the

Fermi level without modifying the band structure of
the matrix in any essential manner. It was shown that
the cohesive energy is proportional to the Fermi en-
ergy [13]. Thus, through the dependence of the Fermi
energy on thee/a ratio, the importance ofe/a ratio in
controlling the cohesion has been shown for monova-
lent metals. Its extension to more complicated situa-
tions is also possible. In evaluating the cohesive energy
of the crystal, variations in the important contributions
such as exchange interactions between closed shells of
ions and kinetic energy of the lowest electronic state
are small if the atomic volume is unaltered. Thus as
long as large volume changes are avoided (which is
valid for dilute alloys and over a limited concentration
range in concentrated alloys) the major change in the
cohesive energy of the crystal is again accounted by
the change in Fermi energy. Within these constraints, a
variation in the cohesive energy of the crystal withe/a
ratio is again proportional to the Fermi energy. Valvoda
and Sprucil [16] have shown that so long as the func-
tional dependence of cohesive energy on volume is un-
changed, the cohesive energy bears a constant ratio to
several properties of the crystal such as specific heat,
heat of fusion, compressibility, Debye temperature and
energy for vacancy formation. Thus, so long as changes
in the Fermi energy of the outer electrons makes a pre-
dominant contribution to the relative changes in the
cohesive energy of the crystal, an interrelationship be-
tweene/a ratio and some physical properties of metal-
lic matrices can be expected within the constraints noted
above.

3. Atomic size consideration
Before discussing in detail the variation of thee/a ratio
with specific physical properties, a consideration of the
atomic size factor seems relevant as it has been exten-
sively employed to discuss the effect of solute additions
on the properties. The size factor is structurally impor-
tant in the formation of Laves phases and interstitial
compounds. Since the atomic size depends upon the
charge of the nucleus, if the two atoms have vastly dif-
fering atomic sizes, it can imply that the nuclear charge
in the two cases are very different and so will be the en-
ergy levels and the nature of extra core electrons. This
factor has been termed by Hume-Rothery as orbital-
type restrictions on the formation of extensive substi-
tutional solid solutions [17]. Under these conditions, if
electronegativity and ionization potential are favorable,
compound formation is likely.

Hume-Rothery and his co-workers showed that the
probability of the formation of extensive solid solution
is extremely limited if atomic size differences exceed
15% [18, 19]. Darken and Gurry provided a simple
explanation for this fact [20]. However, according to
Oriani it is impossible to assert whether atomic size
as such is important, or some other property of the
atom which varies with atomic number, since discus-
sion of the energies of solid solutions on the basis of
elastic energy arising from atomic size misfit leads to
inconsistencies [2, 6]. The calculation of the free energy
or the enthalpy of the formation of a solid alloy aris-
ing from atomic misfit is based on the balancing of
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a hydrostatic compression or expansion of the solute
atom by a distributed shear stress in the surround-
ing lattice. Such a calculation always leads to a pos-
itive number so that when the enthalpy of formation
is negative such as in Au-Cu system, it cannot be ex-
plained [4, 21]. Again, it is not obvious why size factor
considerations based on elasticity theory should give
good agreement for Au-Ni system and fail for Au-Cu
system [5, 6].

A second related question is that since a liquid cannot
support static shear, the elastic theory model based on
atomic size effect cannot be applied in cases of liquid
alloys. On the other hand, a survey of the formation
enthalpies of liquid and solid solutions in liquid binary
alloys of Cu, Ag and Au systems show that atomic size
influences this parameter more or less identically in liq-
uid as well as solid state [4]. If the size considerations
are really significant in influencing the formation of
solid solutions, the liquid solutions must be relatively
insensitive to these differences in comparison to the
solid solutions. In addition to the negative enthalpy of
formation in Au-Cu alloy system, the identical manner
in which the atomic size influences the formation en-
thalpies of binary solid as well as liquid alloys in Cu,
Ag and Au systems presents another example of in-
consistency in this regard [4–6, 21]. Hence atomic size
consideration alone cannot be employed as a basis for
a discussion of the composition variation of the phys-
ical properties and electronic factors arising from the
differences in valency can be significant.

A more critical test of the role of atomic sizes in con-
trolling the physical properties is provided by the exper-
iments of W. R. Hibbard, Jr [22]. The presence of local
stresses due to atomic misfit should affect most predom-
inantly the plastic yielding behavior of the matrix. Such
a misfit will lead to a change in lattice parameter also.
Hibbard experimentally showed that at constant lattice
parameter, the flow stress of copper alloys containing
Al, Sn and Zn is found to be nearly invariant at con-
stante/a ratio. Therefore, solid solution strengthening
models based on difference in atomic size are inconsis-
tent with the result on copper based alloy systems and
physicochemical factors are clearly more important.

4. Stability of phases
A quantum mechanical interpretation of the effect of
e/a ratio on phase stability was given by Jones [14, 17].
The Jones theory [23, 24] explains the extent of solid
solubility and the occurrence of certain crystal struc-
tures in copper based systems in a quantitative manner.
This can in principle be extended to solid and liquid
phase changes as well as the occurrence of the sigma
and omega phases discussed later. The first requirement
is that the change in internal energy makes a predomi-
nant contribution to the free energy. It is also assumed
that changes in the ionic repulsive energy with com-
position are not significant in dilute alloys as well as
over a limited range in concentrated alloys. These as-
sumptions pave the way for the Fermi energy to have
a controlling influence on the change in the internal
energy.

Figure 1 Schematic presentation (not to scale) of Jones model to account
for primary solid solubility of copper alloys [a] Band gap across the [111]
face of zone for fcc structure and [110] faces of zone for bcc structure.
[b] Total electronic energy for and phases [c] Density of states for free
electrons as a function of thee/a ratio [After Massalski].

The density of states is a function of the nuclear
charge and the crystal structure of the matrix. The na-
ture of the curve is parabolic except near the boundary
of the Brillouin zones. In the rigid band scheme used
by Jones, the nature of this curve is not significantly
altered by alloying and hence the chief contribution to
the internal energy of the matrix is made by the change
in density of electrons or thee/a ratio. In case of Cu,
Ag and Au, the number of valence electrons is unity and
the first Brillouin zone is only half filled. With the ad-
dition of higher valence solutes, the zone starts getting
filled up. For fcc and bcc phases this filling up is com-
plete for thee/a ratio values of 1.4 and 1.5 respectively.
There is a discontinuity in the density of states curve
at the zone boundary which coincides with the peak of
the curve (Fig. 1). The cross over to a new phase occurs
when a falling density of states with an increase in elec-
tronic energy level raises the total energy of the crystal
sharply, leading to the destabilization of the original
structure of the matrix.

This cut off point in the electronic energy controlling
the limit of primary solid solubility and the occurrence
of f.c.c. and b.c.c. phases for Cu-based systems was
calculated by Jones [23, 24] from the crystal structure,
X-ray scattering factor and the density of state curve.
Using the lowest value of energy for which discontinu-
ity occurs on any plane, the limiting magnitude of the
e/a ratio theoretically estimated for copper-based alloy
systems was found to be in good agreement withe/a
ratio values empirically established by Hume- Rothery
for the boundary of fcc and bcc phases. A schematic
representation of Jones’ model is given in Fig. 1 [7]. In
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this way, Jones demonstrated thate/a ratio can control
the stability of phases when the Fermi levels of compet-
ing phases have a deciding influence on their internal
energies. A recent interpretation of the Jones theory is
now stated [25–27]:

The Jones theory was the first direct attempt at the
application of quantum mechanics to the stability of
alloy phases in metallic systems. The theory was, how-
ever, beset with two basic difficulties. Firstly, there was
no basis for the assumption that a kink in the density
of states versus wave vector plot constituted a valid
driving force for the destabilization of a given phase.
Jones also assumed that just before the kink in the den-
sity of states plot, a high density of states associated
with falling values of dE/dk ensured structural stabil-
ity. However, the prediction of molecular chemistry are
just the opposite. In molecular chemistry, hybridized
states are divided into bonding and antibonding states
separated by a region of small or zero density of states
and the structure is most stable when the density of
states is small at the Fermi level. Jones himself tried to
correct this lacunae in a later version of his theory. It
was found that it is the total band structure energy rather
than the absolute value of the electron energy at a point
which will have a controlling influence on the relative
thermodynamic stability of the competing phases. To-
wards this goal, it is imperative to calculate the energy
of electrons ink-space in all the regions of the zone.
The second difficulty with the Jones theory was the ne-
glect of s-p-d hybridization in copper. The noble metals
Cu, Ag and Au are intermediate between the transition
and alkali metals. Although they have filled d-shells,
the highest energy levels of d-band lie apart by only
2 eV above the Fermi level and they influence the sp
levels through hybridization. Because of the high den-
sity of states in the d-band, hybridization, as in the case
of transition metals, is strongly favored among degen-
erate sp and d states. Hence for a complete theory of
electron phases, detailed band structure calculations as
well as the hybridization between sp and d states should
to be taken into account. When this is done, fcc phases
are indeed found to be stable betweene/a of 1 to 1.4
and the bcc structure has been found to have maximum
stability ate/a= 1.55.

Application of psuedopotential theory to the stability
of Hume Rothery electron phases showed that instead of
trying to estimate the band structure energy on the basis
of Brillouin zone arguments, one can analyze the many
electron screening effects and evaluate the changes in
the electronic band structure energy due to screened
periodic lattice potentials. In this formalism, the struc-
tural contribution to the total energy depends upon the
screened pseudopotential of the matrix element and the
density response function. The screening is small at
small wave numbers and rises rapidly as the recip-
rocal lattice vector passes through 2kF. It was shown
that ate/a= 1.36, where the Fermi surface touches the
Brillouin zone boundary, screening rapidly increases
and raises the band-structure energy to its free electron
value. The corresponding effect in the bcc structure oc-
curs ate/a= 1.48. More significantly, a common tan-
gent drawn to those two energye/acurves touches them

at aboute/a= 1.36 and 1.48 respectively. This theory
has also been applied to a number of noble metal alloys
and self consistent total energy calculations in the co-
herent potential approximation have also confirmed the
pseudopotential interpretation. It is interesting to note
that the detailed band structure calculations as well as
the psuedopotential method uphold, although for dif-
ferent reasons, the validity of Jones original idea that
the interaction of the Fermi surface and the Brillouin
zone acts to alter the stability of the structure.

It is of course well known that rapid strides have
been made in first principles calculations of many of
the properties mentioned above. Predictions of the for-
mation of intermetallic compounds, the occurrence of
specific crystal structures as a function of composition,
calculation of the density of states for electrons, Fermi
energy and cohesive energy calculations have made
enormous advances [28, 29]. Calculation of defect en-
ergies and prediction of elastic constants have also been
successful. For example, Gyorffy et al studied order and
disorder in metallic alloys using a self consistent KKR-
coherent potential approximation method [28]. Their
first principles mean field theory, while subject to limi-
tations due to the neglect of certain correlations, treats
all the classic Hume Rothery factors on an equal foot-
ing and without any adjustable parameters. Similarly
Turchi et al. performed first principles study of phase
stability in a Cu-Zn substitutional alloy. The Cu-Zn sys-
tem is a classic example of the Hume Rothery phases,
since phase stability is governed by thee/a ratio [29].
A combination of quantum mechanics and statistical
thermodynamics was used to describe the equilibrium
properties of Cu-Zn alloys. This approach pointed to
the importance of configuration dependent properties
which evolve as a function of thee/a ratio, thereby
confirming Hume-Rothery’s concept.

4.1. Extent of primary solid solubility
The factors which limit the solid solubility of solutes
were enumerated by Hume Rothery and his co-workers,
namely, the electrochemical nature and the difference
in the atomic size and the valence number. They also
demonstrated that when plotted against thee/a ratio,
the solid solubility lines in metals like copper, silver
and gold superimpose (Fig. 2). The Jones calculation
based on the rigid band model described above predicts
correctly the terminal solid solubility in copper alloys in
terms of thee/a ratio. These observations serve to show
that when atomic sizes and electrochemical differences
are small,e/a ratio exerts a limiting influence on the
extent of solid solubility.

A critical evaluation of various factors affecting solid
solubility was also made by Hume-Rothery. As stated
above, liquidus as well as solidus lines tend to superim-
pose when plotted againste/a ratio. This observation
clearly establishes the importance of electron-to-atom
ratio in controlling the limit of solid solubility. The
departure from exact superposition is related to lattice
distortion, in the sense that increasing lattice distor-
tion lowers the solidus lines. The lattice distortion at
constant electron concentration is important, not that
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Figure 2 Solid solubilities of various alloying elements in copper and
silver alloys as a function of thee/a ratio [After Hume-Rotheryet al.].

at constant atomic percentage of the solute. The fac-
tors responsible for lattice distortion at constant elec-
tron concentration are: differences in electronegativity,
size-factor and orbital type of restrictions, which give
rise to differences in energy levels of the electrons of
the solvent and solute atoms.

4.2. Transition metal alloy phases
Transition metal alloys form a number of intermediate
phases with complex layered structures. These phases
are normally hard and brittle and their presence is un-
desirable in commercial alloys. The sigma phase in
chromium bearing steels and omega phase in zirconium
and titanium alloys have special technological signif-
icance. Hume-Rothery showed that the occurrence of
sigma phases in transition metal alloys is related to the
electron to atom ratio Fig. 3 [30]. The effect of thee/a
ratio on the formation of omega phase has been inves-
tigated by Ezakiet al. and Lukeet al. [31, 32]. Fig. 4

Figure 3 Composition range of sigma phase in transition metal alloy
system as a function ofe/a ratio [after Hume-Rothery].

Figure 4 Composition range of the omega phase plotted againste/a
ratio [After Collins].

shows this effect in alloys in which omega phase for-
mation has been studied [33]. The dependence one/a
ratio is evident in Figs 3 and 4.

5. Electron phases with hexagonal symmetry
Hexagonal close packed electron phases fall into three
groups and are denoted by Greek lettersε, η andζ [34].
Excluding the range of 1.89–1.93, these phases occur
between thee/a ratio values of 1.32–2.00 [7]. A de-
tailed investigation of the physical properties of these
systems has provided data on the influence of thee/a ra-
tio on the crystal structure of these phases. Fig. 5 shows
the electronic specific heat, superconducting transition
temperature, Debye-temperature etc. plotted as a func-
tion of thee/a ratio. These graphs, particularly elec-
tronic specific heat, axial ratio and Debye temperature
show a fairly simple linear relationship with thee/a
ratio.

Figure 5 Variation of electronic specific heat axial coefficient (γ ), De-
bye temperature (θ ) axial ratio [c/a] and the superconducting transition
temperature [Tc] for hexagonal electron phases tc as a function of the
e/a ratio [after Massalski].
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6. Defect phases
An interesting series of compounds between transition
elements (Fe, Co, and Ni) and non-transition elements
(Al, Al, Sn, Sb, Se, S etc.) have been observed to form
at constante/a ratio of 1.5. Transition elements are as-
signed zero valency in this scheme. With the change in
number of solute atoms, a change occurs in the number
of atoms per unit cell in such a way that thee/a ratio is
maintained unchanged through the creation of either va-
cancies or interstitials. Such defects (vacancy or inter-
stitial), to differentiate them from those thermally gen-
erated, are designated as constitutional defects, since
these are produced-- independent of the temperature--
to stabilize the structure. It is believed that they occur
to maintain an optimum electronic energy; equiatomic
Ni-Al alloy is a typical example of a defect phase. At
50% it possesses B2 crystal structure. If nickel con-
tent is increased beyond 50%, it goes to interstitial sites
and there is a fall in lattice parameter and rise in the
density, Fig. 6. However, with an increase of Al con-
tent also, lattice parameter and density decrease and
detailed investigations have shown that this is caused
by the formation of constitutional vacancies [35]. Be-
low 49 at. % of nickel, the lattice spacing falls rapidly
with increasing Al ratio. At the same point, the observed
density curve breaks away from the calculated curved
(shown dotted) and drops well below it. Similar behav-
ior is observed in a series of phases, where composition
gradually changes from AB to A2 B type. A point to be
noted is that in the case of defect phases it is the number
of valency electrons per unit cell (e/uc), rather than va-
lency electrons per atom (e/a ratio) which is important.
The e/uc is in fact a more fundamental quantity than the
e/a ratio and in the case of defect phases, the structure
adjusts so that e/uc is constant whilee/a ratio may
change.

Figure 6 Lattice spacing and density of AlNi and AlCo systems as a
function of composition [after Massalski].

Figure 7 Liquidus temperatures of Copper alloys plotted againste/a
ratio [After Hume-Rotheryet al.].

7. Liquidus curves of primary metallic
solid solutions

The liquidus curves of alloys of copper and silver when
plotted against equale/a ratio value nearly superim-
pose [19, 30]. Liquidus curves for various copper al-
loys are given in Fig. 7. The rationalization of the
liquidus data on the basis of thee/a ratio indicates
that the Jones concept may be valid for solid to liquid
phase change also. Theoretically, it is difficult to es-
tablish this fact because it is not possible to estimate
Fermi energy for liquid state with the desired degree of
accuracy.

8. Stacking fault energy
Stacking fault energy [SFE] of metals and alloys
affects their stress-strain relationships, recovery/re-
crystallization behavior as well as the deformation
texture. In close packed lattices, stacking faults are
formed by the dissociation of dislocations into two par-
tials. However, in transition metals like iron, cobalt,
nickel, ruthenium etc., formation of stacking faults
depends upon the relative competition between ener-
getically comparable structures. An estimation of the
contribution of the d and s electrons to the cohesive
energy shows that since d electrons make a major con-
tribution to the cohesive energy, the favorable struc-
tures are determined by the number of d electrons per
atom. The stacking fault energies as well as the al-
lotropic behavior of transition metals conforms to this
behavior [1].

In noble metals and alloys, the perturbation of con-
duction electrons by the presence of faults in the stack-
ing sequence is important. The change of direction
produced by stacking faults results in an increase in the
energy of the crystal; this increase in energy constitutes
the stacking fault energy. Measurement of stacking fault
energies in copper and its alloys are shown in Figs 8
and 9. While Thorntonet al. [36] studied Ag-Al and
Ag-Zn, Smallman and Westmacott [37] studied alloys
of copper with Al, Zn, Sn etc. Both these investigations
indicate that the stacking fault probability and hence
the SFE is a function of thee/a ratio rather than the
nature and content of the solute element.
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Figure 8 Variation of stacking fault energy withe/a ratio of silver alloys
[After Thorntonet al.].

Figure 9 Variation of the stacking fault probability withe/a ratio in
copper alloys.

9. Electronic specific heat coefficient
The electronic specific heat coefficient (ESHC) is gov-
erned by the density of states at the Fermi level. Con-
sidering only the interaction of electrons with the static
lattice, the specific heat depends linearly on the absolute
temperature:

Cv = γT + βT3+ (OT)T5

where the linear term is the electronic contribution to
the heat capacity,β is the low temperature heat capacity
contribution and OT signifies high temperature contri-
butions. A simple and direct relationship betweene/a
and the ESHC is not expected. Experimentally how-
ever, it has been demonstrated that for lead as well as
noble metal alloys, ESHC increases withe/a. The vari-

Figure 10 Electronic specific heat coefficient of Lead alloys as a func-
tion of thee/a ratio [After Clune and Green].

Figure 11 Electronic specific heat coefficient of copper and silver alloys
as a function of thee/a ratio [after Massalskiet al.].

ation of ESHC withe/a ratio for lead alloys is shown
in Fig. 10.

The example where ESHC depends upon the shape of
E vsN(E) curve is shown in Fig. 11 [34]. An increasing
trend is visible in the lowere/a range, followed by a
broad maximum at intermediate value and a decreasing
trend at highere/a ratio.

10. Activation energy for diffusion
Fumi [38] has shown that the vacancy formation energy
in metals [Ev] is related to the Fermi energyEf by the
equation:

Ev = K1Z Ef

whereZ is the valence of the metal and in case of alloys
it can be taken equal to thee/a ratio, K1 is a numerical
constant. Using the standard relation between Fermi
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Figure 12 Activation energy for self diffusion of solvent, versus thee/a
ratio for silver alloy system [After Tiwariet al.].

energy and thee/a ratio, Tiwariet al.[39] showed that
Ev can be expressed in terms of thee/a ratio as

Ev = K2[e/a]5/3L−2

whereL is the lattice parameter andK2 is another con-
stant. This relationship can be extended to activation
energy for diffusion (Q) because for a group of solids
having identical physical and chemical properties, the
ratio betweenEv andQ is a constant. Fig. 12 shows that
the linearity for individual alloy systems is maintained.
However, if thee/a ratio is the only factor influencing
Q in an alloy, then all the curve should superimpose.
This does not happen due to factors like the differences
in electronegativity.

11. Flow stress in solid solutions
The effect of alloying is to increase the yield stress
of the alloy and the strengthening produced by the so-
lute additions is designated as solid solution hardening.
Allen et al.[40] examined the tensile properties of cop-
per based zinc, gallium, germanium and arsenic solid
solutions to evaluate the effect of solute additions. The
tensile behavior of the alloys was studied in the an-
nealed condition at approximately identical grain size
so that the resistance to plastic deformation in different
alloys can be compared effectively and the effect of al-
loying can be discerned clearly. In Fig. 13, true stress
strain curves of four alloys having approximatee/a ra-
tio of 1.087 are shown. The weight percentages of zinc,
gallium, germanium and arsenic is 9, 4.05, 3.34 and
2.48 respectively. The true stress strain curves for all
of them nearly superimpose on each other. 0.5 percent
proof stress of the these alloy was also found to exhibit
similar behavior with respect to thee/a ratio.

More direct experimental evidence for thee/a ratio
as controlling parameter in plastic deformation of dilute
alloys was provided by W. R. Hibbard. Jr. [22], who car-
ried out his experiments in copper-based alloys having
nearly identical grain size as well as lattice parameter
(to eliminate any possible influence of these factors in
the comparison of plastic yielding behavior). At con-
stante/a, the stress-strain curves superimpose [40]. A
plot of yield strength versus thee/a ratio at constant

Figure 13 Stress-strain curves of copper base solid solution with same
thee/a ratio [After Allen et al.].

Figure 14 Yield stress values for copper based alloys of equal lattice
parameters [After Hibbard Jr.].

values of lattice parameter and the grain size is shown
in Fig. 14. The data shows a linear increase in yield
strength with thee/a ratio. Hibbard also showed in
conformity with Suzuki’s predictions [41], that the flow
stress depends only slightly on the temperature. If size
factors effects are significant in influencing the plas-
tic deformation, temperature should cause a dramatic
decrease in the yield strength with temperature. Thus
thee/a ratio appears to play a more significant role in
influencing the plastic yielding behavior of alloys as
compared to the atomic size factor.

12. Elastic constants
A fair amount of data are available on the dependence
of elastic constants one/a. Neighbours and Smith [42]
extended Fuchs [43] treatment of elastic constants of
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copper to present an elegant demonstration of the de-
pendence of these parameters one/a. The expression,
with a being the lattice parameter, for electrostatic stiff-
ness forC44Eand 0.5(C11−C12)=C′E were as follows:

C44E= 0.9478(2e2/a4)

C′E = 0.1058(2e2/a4)

Ionic stiffness contribution were also calculated in a
similar fashion. Outside the filled closed ion shell, cop-
per has got one electron. After alloying, the contribution
of electrons for each atom to the respective charge dis-
tribution is e/a = Z. Then equations forC44E andC′E
are modified for the alloys as follows:

C44E= 0.97478(e2Z2/a4)

C′E = 0.1058(2Zne2/a4)

Changes in ionic stiffness parameter are small in com-
parison to the changes in the electrostatic stiffness and
can be accounted by introducing a proportionality fac-
tor α. Proceeding on this basis, the following expres-
sions were derived for the changes in the elastic con-
stants due to alloying [42]

1C44 = C44(Z
2− 1)+ C′αx

1C′ = C′(Z7− 1)+ C′αx

In order to arrive at the change in the elastic constants
that can be ascribed to alloying, the values of1C44
and1C′ obtained from the above equations have to be
adjusted for the changes in lattice parameter upon alloy-
ing. The magnitude of the adjustment can be obtained
from the differentiation of the above two equations.
Neighbors and Smith measured theC44 and C′ of a
number of copper alloys and the experimental values of
1C44 and1C′, after adjustment for a volume change,
were substituted in the above two equations to evaluate
Z andα. The value ofZ so obtained was compared with
the actual values ofe/a calculated on the basis of alloy
composition (Table I). The close correspondence be-
tweenZ and actuale/a shows the importance ofe/a in
determining the elastic constants. Near constant value
of α for each alloy system provides further support for
their method.

The most important assumption in the above anal-
ysis is the uniform distribution of negative charge. It
is well established that in substitutional alloy the va-
lence charge must pile up in the vicinity of more highly
charged solute. This should makeZ less thanq. How-
ever, in the rigid band approximation, so long as the
electronic band structure does not change or exhibits
any singularity, the assumption of uniform charge dis-
tribution is not too restrictive. The anisotropy factor
also shows that a smooth linear dependence upone/a
is present [42].

The influence ofe/a on the elastic constants in tran-
sition metal alloy system has been reviewed [44]. The
alloy systems Zr-Nb-Mo-Re have been examined in de-
tail (Figs 15 and 16). In these alloy systems, the mea-
surement of elastic constants has been carried out as a

TABLE I A comparison of Z and electron to atom ratio for some
copper based alloys

Atom
composition q, electron/atom

Alloy (percent) α Z ratio

CuZn 4.50 −1.0 1.08 1.05
CuAl 4.81 −0.9 1.11 1.10

9.98 −0.8 1.25 0.20

CuGa 1.58 −1.4 1.03 1.03
4.15 −1.0 1.09 1.08

CuSi 4.17 −2.5 1.13 1.13
5.16 −3.0 1.18 1.16
7.69 −3.0 1.25 1.23

CuGe 1.03 −3.6 1.06 1.03
1.71 −3.3 1.09 1.05

Figure 15 Composition dependence ofK for Zr-Nb-Mo-Re and Nb-
Ti, Nb-Hf, Nb-W alloys.K = 0.5(C11+ 2C12),1=Mo-Re, 0,∇ =Nb-
Mo, ◦,¤=Zr-Nb, . . .=Nb-W, Nb-Hf, Ti 40 Nb, O=Ti-Nb polycrystal,
Solid line= 100 K, dashed line= 300 K.

function of temperature and pressure. The latter data
can provide information on the effect of volume on
elastic constants. This information can be used to cor-
rect for the measured changes in elastic constants at-
tributable to alloying. As discussed above such a sepa-
ration of the volume effect from the net change is essen-
tial to establish the intrinsic dependence of elastic con-
stants one/a. Two different scenarios are considered
while discussing the effect ofe/a on elastic constants
in transition metal alloy systems:

12.1. Rigid band behavior
The rigid band model correctly reproduces the magni-
tude as well as the temperature dependence of elastic
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Figure 16 Composition dependence ofc′ in 3d, 4d and 5d bcc solid
solutions at 300 K. Base: Zr-Nb, Nb-Mo, Mo-Re, 4d1: Ti, Ti-V, V-
Cr, Cr, 3d O: Ti-Cr, 3d o. . .: Ta, Ta-W, W-Re, 5d∇: Ti 40 Nb, Nb-Hf,
Nb-W,¤.

constants. Here the effect of alloying is merely to
change the density of the negative charge and not the
shape of band. In this case, when the elastic constants
are plotted againste/a, there are no singularities and
relationship is properly represented by a straight line.

12.2. Anomalous behavior
In several alloys systems the linear relationship between
the elastic constants ande/a is absent [44]. There is a
regular variation which is punctuated with singularities
at some fixed values ofe/a which is governed by the
topology of the Fermi surface. The singularity in the
e/a versus elastic constant plot is an indication of a
significant alteration in the electronic structure. This
interpretation is supported by the fact that anomalous
change in the elastic constants with the composition
corresponds almost exactly to the changes in magnetic
susceptibility [45].

13. Superconducting transition
temperature [Tc]

The correlation betweene/a ratio and the supercon-
ducting transition temperature (Tc) comes in impor-
tance next only to the phase stability [46–48]. The work
of Mathias and his workers established systematics of
the relationship betweene/a and the superconducting
temperature [49, 50]. As one moves along with the vari-

Figure 17 Transition metalTc as a functioofe/a ratio [after Gladstone
et al.].

Figure 18 Tendency for stress corrosion cracking as a function ofe/a
ratio [after Westwood].

ous rows of the periodic table, the variation of Tc is sur-
prisingly systematic. In transition metals and alloys su-
perconducting transition temperature (which provides
among other things some measure of Fermi surface den-
sity of states) can be qualitatively predicted using only
e/a ratio as shown in Fig. 17. Among transition metals
and alloys, Tc peaks at around 4.5 and 7.0 electrons
per atom. The applicability of this relationship is in-
deed extensive. In fact a large number of superconduc-
tors can be discovered provided one follows the curve
shown in Fig. 17. A demonstration of the validity of the
correlation depicted in Fig. 17 is provided by a 50–50
alloy of molybdenum (which is non-superconducting)
and ruthenium (Tc= 0.6 K). This alloy has the same
number of valence electrons per atom as technetium
and a Tc of 10.6 K which compares well with the Tc
for technetium which is 11 K. A plot similar to that
shown in Fig. 17 has been prepared for niobium al-
loys by Wernick [51]. The above observations make it
reasonable to think in terms of a universal model for
conduction band of transition metals in which the ar-
ray of metallic ions can be visualized as a “rigid band”
structure into which electrons are incorporated and the
properties of the matrix are determined by the number
of conduction electrons per atom. An explanation of the
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variation of Tc with composition for transition metals
may be given on the basis of the BCS theory of super-
conductivity, which shows that the variation of Tc with
e/a follows a systematic behavior.

In high temperature oxide superconductors, there is a
mixture of covalent and ionic bonds. As such, a simple
correlation betweene/a ratio and Tc is unlikely to exist
in oxide superconductors. Two correlations have been
proposed [52, 53]. Villarset al. discussed an empiri-
cal relationship based on an averaged valence-electron
number, differences in orbital and electronegativity dif-
ference encompassing metallic as well as oxide super-
conductors. Li-Yuan examined 70 oxide superconduc-
tors and noted that all of them lie between averaged
electronegativity value between 2.5 and 2.7. The aver-
aged valence [which is same as thee/a ratio] for super-
conductors having these electronegativity values varied
between 2 and 2.45. From the above discussion, it is fair
to conclude that other than electronegativity and size
factors, a critical value of thee/a ratio may be an im-
portant factor controlling Tc in oxide superconductors.

14. Stress corrosion cracking
In a study of adsorption sensitive fracture properties, it
was shown that the severity of embrittlement changes
with a variation in the stacking fault energy and the elas-
tic constants [54]. Sincee/a ratio affects both stacking
fault energy and elastic constants, it is expected that the
fracture stress in mercury of copper base alloys could
be correlated with thee/a ratio (Fig. 18) and a good lin-
ear fit was indeed obtained between the fracture stress
and thee/a ratio of these alloys.

15. Aperiodic structures
The important trend in the structure of crystals are
also reflected in the formation of liquid alloys, metal-
lic glasses as well as quasicrystalline compounds. This
trend has been discussed in detail [25–27] and the
salient points are noted below. In weakly interacting
systems such as Mg-Zn, the geometrical requirements
of sphere packing leads to random polyhedral structure.
In systems with pronounced difference in electronega-
tivities and electron densities, mutual interactions pre-
dominate as a result of reduced screening effects. In
this situation, as in the case Ca-Zn, formation of strong
Zn-Zn bonds dominate the structure which consists in
trigonal arrangement of larger Ca atoms around Zn-Zn
bonds. In the intermediate case represented by systems
formed by the mixing of noble metal with elements
of higher valency (which form Hume-Rothery elec-
tron compounds), electronic influence appears to con-
trol the formation of metallic glasses and quasicrystals.
The starting point for the consideration of electronic
influence on the formation of a periodic structure is the
conclusion reached from the application of the pseu-
dopotential method to the Hume-Rothery electron com-
pounds. It states that the structural energy rises rapidly
as the reciprocal lattice vector (Q) passes through 2kF.
In real space, it implies that the lattice spacing is same as
the wave length of electrons of the Fermi level. For close

packed structures, this situation will arise at smaller
lattice spacings and low values ofe/a ratio. As the
e/a ratio increases, the wavelength of electron at the
Fermi level becomes larger leading to the formation of
more open structure at largere/a values. This state-
ment agrees with the fact that the maximum stability
of fcc, bcc andγ - brass structure occur ate/a values
of 1.36, 1.48 and 1.8 respectively. Continuing this line
of argument, it is logical to infer that the more open
aperiodic structure will be formed at still higher values
of e/a. Simple metallic glasses like Mg-Zn or Ca-Mg
and the glasses formed by noble metals and polyvalent
elements do in fact satisfy theQ= 2kF criterion. For
crystalline matrics, the conditionQ= 2kF is associated
with constructive interference between the pair corre-
lation functiongir (R) and pair potentialϕir (R), such
that the maximumgir (R) coincides with minimum in
ϕir (R). Another consequence of this feature is the oc-
currence of a minimum in the density of states at the
Fermi level. The preceding discussion helps us to arrive
at a criterion for the occurrence of periodic as well as
aperiodic structures. For a given value ofe/a, the most
stable structure will be the one for which both the crite-
ria of (i) Q= 2kF and (ii) the minimum in the density of
states at the Fermi level are satisfied. This conclusion
finds support from electronic band structure calcula-
tions as well as from photo-electron spectroscopy data.

Alloys of the noble metals with the polyvalent ele-
ments that fall to the right of the noble metals in the
periodic table have been used to test theories of the
Hume Rothery phases. This is because the d-band of
these alloys is filled and thee/a ratio can be easily
changed. Studies by Mizutani [55] have shown that
glass formation in several alloys such as Au-Si, Ag-
Si, Cu-Ag-Ge and Au-Si-Ge is clearly a function of the
e/a ratio (Fig. 19). The formation of the amorphous
phase can be clearly correlated with specific range of
values ofe/a ratio.

Quasicrystalline phases of many alloys fall in the
range of e/a= 2.1–2.4. This suggests that a simi-
lar mechanism may be important in stabilization of
quasicrystalline phases. Three dimensional structure
maps defining the stability range of many crystalline

Figure 19 Electron concentration dependence of amorphous regions in
Cu-Ag-Ge and Cu-Ag-P alloy systems [after Mizutani].
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and hypothetical mono-atomic quasicrystalline struc-
ture have been constructed and it was found that the qua-
sicrystals are stable in a narrow region separating close
packed and open crystalline structure. Although no el-
ement lies in this region, virtual crystal parameters of
known quasicrystalline alloy fall into the proper param-
eter range. It was concluded that the quasicrystalline
state is stabilized by a mechanism similar to that men-
tioned earlier for metallic glasses. Al-based quasicrsy-
tals are also thought to be stabilized by a similar mecha-
nism [56]. Experimental (electrical transport measure-
ments, soft x-ray spectroscopy) and theoretical studies
suggest that the quasicrystal is stabilized when a pseu-
dogap develops in the density of states, arising when the
Fermi surface touches the quasizone boundary, thus in-
creasing the cohesive energy. The quasizone boundary
is analogous to Brillouin zones in ordinary crystals.

16. Summary
A wide variety of physical properties may exhibit a
systematic variation when plotted against the electron
to atom ratio. Empirical correlation of these properties
with the electron to atom ratio has been documented:
the range of stability of solid solutions, intermetallic
compound formation, liquidus temperature in metals,
the axial ratio of hexagonal phases, formation of de-
fect phases, stacking fault energy, electronic specific
heat coefficient, flow stress, superconducting transition
temperature, stress corrosion cracking, elastic constants
and activation energy for diffusion. These correlations
may serve as a base for first principles calculations of
these properties. The correlations discussed can also be
used to fine tune the composition in order to optimize
the desired properties.
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